AI Text Prompts in the Deconstruction of New Skills and Professions in the Creative World
Keywords:
Artificial Intelligence, Art Education, Deconstruction, Prompt, Visual Communication DesignAbstract
The integration of AI into Visual Communication Design (DKV) has revolutionized the creative design profession. This research aims to identify emerging new skills as a result of using AI prompts, analyse how these skills shape new professions in the industry, and assess the relevance of Visual Communication Design education curricula in the context of AI development. A qualitative approach was employed in this study, including literature reviews, interviews with industry practitioners, and content analysis of various AI platforms used in creative processes. This study reveals that the use of AI text prompts has given rise to various new skills, including the ability to formulate creative and effective prompts. The study also demonstrates that AI text prompts have been a catalyst for the emergence of new professions and skills relevant to the AI era. Consequently, there is a gap between the industry’s need for DKV graduates with AI skills and the existing design education curricula. To bridge this gap, universities need to update their curricula and integrate AI learning into their programs, as the ability to adapt to new technologies and develop relevant skills will be key to the success of future designers.
Downloads
References
Altiria, S. (2023). Dekonstruksi Derrida Pada Kajian Linguistik Kognitif. Prosiding Konferensi Linguistik Tahunan Atma Jaya (KOLITA), 21(21), 270–280. https://doi.org/10.25170/kolita.21.4857
Bandi, A., Adapa, P. V. S. R., & Kuchi, Y. E. V. P. K. (2023). The Power of Generative AI: A Review of Requirements, Models, Input–Output Formats, Evaluation Metrics, and Challenges. Future Internet, 15(8). https://doi.org/10.3390/fi15080260
Feng, Y., Wang, X., Wong, K. K., Wang, S., Lu, Y., Zhu, M., Wang, B., & Chen, W. (2023). PromptMagician: Interactive Prompt Engineering for Text-to-Image Creation. IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2023.3327168
Galanter, P. (2003). What is Generative Art? Complexity theory as a context for art theory. Proceedings, 225–245. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.90.2634
Huang, L. F. (2010). Artificial intelligence. In 2010 The 2nd International Conference on Computer and Automation Engineering, ICCAE 2010 (Vol. 4). https://doi.org/10.1109/ICCAE.2010.5451578
Lee, S., Lee, J., Bae, C. H., Choi, M. S., Lee, R., & Ahn, S. (2023). Optimizing Prompts using In-Context Few-Shot Learning for Text-to-Image Generative Models. IEEE Access, PP, 1. https://doi.org/10.1109/ACCESS.2023.3348778
Mirzoeff, N. (1999). An Introduction to Visual Culture. Routledge, 274.
Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. In MIT (Vol. 16). https://doi.org/10.55056/nocote.v16i0.830
Rismanita, E., Marto, H., & Sakka, A. (2011). Teori struktur intelektual Guilford. Sigma (Suara Intelektual Gaya Matematika), 3(1), 48–56. https://journal.unismuh.ac.id/index.php/sigma/article/view/7204
Sternberg, R. J. (2006). The nature of creativity. Creativity Research Journal, 18(1), 87–98. https://doi.org/10.1207/s15326934crj1801_10
Sunarto, Priyanto, (2019). Metafora Visual; Kartun Editorial Pada Surat Kabar Jakarta 1950-1957, Penerbit IKJ Press, Jakarta.
Safanayong, Yongky, (2004). Desain Komunikasi Visual. Penerbit Arte Intermedia, Jakarta.
Strinati, Dominic, (2007). Popular Culture; Pengantar Menuju Teori Budaya Populer,. Penerbit Jejak, Yogyakarta.
https://www.bing.com/images/create
https://www.youtube.com/watch?v=QN6Ve6LuP8c
https://www.youtube.com/watch?v=z_aKLP5pBhY
https://www.youtube.com/watch?v=gRP3V2sz-M8
https://www.youtube.com/watch?v=zxnXpSfoXhQ
https://www.youtube.com/watch?v=Od3FRMLqwFk
https://www.youtube.com/watch?v=d9PXEWuS25w
https://www.youtube.com/watch?v=yNk4O5K7Fio
https://www.youtube.com/watch?v=jC4v5AS4RIM
https://www.youtube.com/watch?v=WRcSeqFLbng
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Saut Irianto Manik

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.